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Residual stresses arising in elastoplastic 
materials deformed in active media under torsion 
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Institute of Physical Chemistry, Russian Academy of Sciences, Leninsky prospect 31, Moscow 
117915, Russia 

Solutions to problems of pure elastoplastic torsion in surface-plasticized and surface-hardened 
rods are given. The distribution of residual tangential stresses along the rod radius is shown to 
have an oscillating and sign-alternating character in both cases. In surface-plasticized rods, in 
contrast to surface-hardened rods, the residual stresses in the external layer always have the 
opposite sign with respect to the active loading stresses produced by the outer torsional moment. 
Conclusions have been drawn about the character of the defect structure changes as well as about 
the conditions of sample fracture under cyclic torsional te'sts during the action of alternating outer 
force moments. 

1. Introduction 
The residual stresses arising in surface-modified 
materials after uniaxial extension, constriction or 
bending have been determined [1,2] using the 
methods of theory of elastoplasticity. The present 
work describes the results of a theoretical study de- 
voted to the analysis of the residual stresses found in 
surface-modified materials after torsion. 

2. Theory 
The model isotropic ideally elastoplastic material con- 
sidered previously [1, 2] was again considered. To 
simplify calculations the sample was assumed to be 
homogeneous in the absence of any media, i.e. mech- 
anical characteristics along every rod cross-section 
were supposed to be identical. The influence of active 
media was taken into account by introducing a surface 
layer of a known thickness into the sample, the layer 
having a macroscopic shear stress point, Zss, different 
from the macroscopic inner (core) shear stress point, 
Ks. Interlayer boundaries were considered to have an 
infinitesimal thickness; medium effects on material 
elastic constants were neglected. The pure elastoplas- 
tic torsion of a cylindrical rod around its symmetry 
axis (Fig. 1) was analysed. 

2.1. Homogeneous rod (inert medium test: 
Xss/'Cs = 1) 

Using known methods and procedures of plasticity 
theory [3], the distribution of residual stresses can 
readily be found 

cri'~ = 0 when i,j # z, q) (la) 

Me 
Ks I - r  when Co ~< r ~< b (lb) 

z'=~(r)= % Mo,~r whenO<~r<~ Co 7) (lc) 

where I --- r~b4/2 is a polar inertia moment of the rod 
cross-section, Co is the radius of the inner rod area 
which was not involved in primary plastic deforma- 
tion under the external torsional moment, Me (the 
elastic core). Co, the torsional moment, Me, and the 
rod radius, b, are interrelated through the following 
equation 

M0 = ~Tzb3"cs 1 - ~ (2) 

It follows from Equations 1 and 2 that the residual 
stresses at the surface of a homogeneous rod are al- 
ways of different sign with respect to the outer (load) 
stresses caused by a torsional moment Me. In the 
elastic (core) region these stresses are of the same sign. 
The change in sign of the residual stresses occurs at the 
cylindrical surface with radius re = Ks I/Me. The resid- 
ual stresses reach their extreme values at the rod 
surface, as well as at the elastic core boundary. Fig. 2a 
shows the residual stresses distribution for Mo/(rcb3"cs) 
= 0.58 (at Co = 0.Sb). 

It also follows that the extreme residual stresses at 
any value of torsional moment which is not causing 
a loss of bearing capacity, cannot be higher than the 
shear stress point. Therefore, under cyclic torsion, 
with moments of the same sign, the homogeneous rod 
will behave as if it is "autostrengthened" [3]. 

2.2. Surface-plasticized rod (tests in a surface 
active medium: ~s/Xs < 1) 

Let us discuss the most general case when both the 
surface-plasticized layer and a part of the inner zone of 
the rod, having an initial yield stress point, Ks, are 
involved in plastic deformation under torsion. The 
outer (load) stresses distribution occurring in the rod 
due to torsional moment is found by solving the full 
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Figure 1 Structural model of a surface-modified rod in a cylindrical 
coordinate system: d is the thickness of a modified layer; M the 
torsional moment  of the outer forces; b the rod radius; r, % z are 
cylindrical coordinates of an observation point. 

set of equations of plasticity theory [3, 4] 

u = 0 when i,j # z, qa (3a) 

f zPs when b -  d ~< r ~< b (3b) 

z z~( r )=~  Zs when Cp <~ r ~< b - d (3c) 
"c s - - r  when 0 ~< r ~< Cp (3d) 
Cp 

where Cp is elastic core radius. The torsional moment 
Mp and Cp values are related by equation 

M v = ~ feb 3 "C s 1 --  - 

+ Z ~ s [  l ~ s  - (1 -~ f ] }  (4) 

For example, Fig. 2b shows "~z~(r) distribution at 
d / b = O - 1  and ~sPs/%=0.75 for M p - - M 0  (at 
Cp = 0.6b). A comparison of Equations 2 and 4 shows 
that if M v = Mo the depth of the layer involved in 
plastic deformation of a plasticized rod exceeds that of 
the homogeneous one. The stress tensor component, 
zz~, at the boundary between the plasticized layer and 
the inner zone (with r = b - d) undergoes a jump, the 
step height being equal to A~ ,  = Zs - Z~s. 

Residual stresses in a material under consideration 
can be found by solving the problem of elastic unload- 
ing in a surface plasticized rod which has been twisted 
to the elastoplastic state. The residual stresses distri- 
bution is as follows (see Fig. 2b) 

cq~ = 0 when i , j  • z,q~ (5a) 
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Figure 2 Distribution of(l)  the outer torsional and (2) the residual 
stresses in (a) a uniform, (b) surface-plasticized and (c) surface- 
hardened rods: The outer torsional moments  ratio 
Mo:Mp:Mh= 1:1:1.4. 

when b - d ~< r ~< b (5b) 

when Cp ~< r ~< b - d (5c) 

when 0 ~< r ~< Cp (5d) 

T~+ (r) = 
zp Mp 

f SS M I-p r 
T S r 

(+s 
r 

Comparison of Equations i a n d 5  allows us to con- 
clude that the general character of the residual stresses 
distribution of homogeneous and surface-plasticized 
rods is qualitatively similar. In both cases the extreme 
values, z~ ,  occurred at the rod surface and in the 
elastic core boundary. But taken as a whole, the resi- 
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dual stresses level in a plasticized rod as well as gradi- 
ents are considerably higher that those of a 
homogeneous one. 

It follows from Equations 4 and 5 that if b ~> d and 

then the residual stresses in the external layer of the 
surface-plasticized rod are not higher than its shear 
stress point, and the secondary opposite plastic defor- 
mation of the material does not occur. Therefore, to 
attain the "autostrengthened" state in a surface-plas- 
ticized rod under cyclic twisting by torsional moment 
of the same sign, the amplitude of the torsional mo- 
ment should not exceed some critical quantity. This 
quantity depends on the plasticized effect of the me- 
dium (i.e. on numerical values of'csPs/zs and d) and for 
a rod of a known diameter it can be found from 
Equations 4 and 6. Otherwise, the fatigue strength of 
the rod in a plasticized medium will be markedly 
lower than that in an inert medium. 

2.3. S u r f a c e - h a r d e n e d  rod ( tes ts  in a surface- 
active m e d i u m :  ;shs/'Cs > 1) 

As in the previous version, the most general case of 
elastoplastic torsion was considered when both the 
near-surface layer and a certain part in the inner zone 
of the material were involved in the plastic deforma- 
tion. This obviously takes place providing that 
Ch ~< (b - d) rs/Xshs, where Ch is the elastic core radius. 
The relation between Ch and torsional moment Mh at 
b ~> d within accuracy of the members (d/b) 2, is as 
follows 

Mh - . - -  + 4~\~---~- -- 

(7) 

The distribution of outer (load) stresses caused by 
a torsional moment, Mh, can be described in a surface- 
hardened rod as 

~u = 0 when i , j  r z, cp (8a) 

s s  when b -  d ~< r ~< b (8b) 

�9 =~(r)-- ~s when Ch ~< r ~< b -  d (8c) 
~S 

- - r  when 0 ~< r ~< Ch (8d) 
C~ 

An example is shown in Fig. 2c by the ~=~(r) distribu- 
tion at d/b =0.1;  Z~s/~s -- 2 and Ch = (b - d) /2.  

Residual stresses can be described by the following 
functions (Fig. 2c) 

i'j = 0 wheni,  j 4: z,q~ 

"c;o (r) = 

~shs i - r  when b -  d ~< r ~< b 

Mh 

it,2 % h r when 0 ~< r ~< Ch 
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It follows from Equations 9 that with 
ZsI/(b - d)  < M h  < "C~sI/(b - d), three coaxial cylin- 
drical zones differing in residual stresses sign exist 
simultaneously in the surface-hardened rod. In order 
to form such a structure of adjacent constricted and  
stretched zones in the rod with b ~> d, the following 
relationship should be satisfied 

�9 > g (10) 

It can be seen that in the case of a surface-hardened 
rod with ~shs/Xs > 1.33, a three-layer structure exists at 
any torsional moments up to maximum one limited by 
the maximum bearing capacity of the rod (the latter is 
exhausted at Ch = 0). 

Calculations prove that for the case under consid- 
eration the extreme values of the residual stresses are 
attained at the elastic core surface (with r = Ch) as 
well as at the boundary surface between the hardened 
external layer and the inner soft zone. In this bound- 
ary the leap (or step jump) of the stress tensor com- 
ponent takes place, accompanied by the alteration in 
sign. A repeated sign change of the residual stresses 
occurs in the inner zone of the rod, at the cylindrical 
surface with radius ro = "CsI/Mh. 

The analysis of the solutions also confirms the fact 
that maximum values of residual stresses in each zone 
with any actually attained torsional moments do not 
exceed the shear stress point of the corresponding 
material layers. Hence, a cyclic torsion of the surface- 
hardened rod by a moment of the same sign will not 
cause the secondary opposite plastic deformation of 
the material; under these conditions, "autostrengthen- 
ing" of the rod occurs. 

Analysis of residual stress distributions arising in 
the surface-plasticized and the surface-hardened rods 
shows that the distributions differ drastically. The 
main difference consists in the fact that in a plasticized 
rod, in contrast with the hardened one, the residual 
stresses in the near-surface layer always have the op- 
posite sign with respect to the outer active stresses 
(caused by an outer loading moment). 

It should be mentioned, however, that some com- 
mon features are typical of these distributions. Among 
them there are oscillating changes of tangential stres- 
ses in a rod depth and the existence of high stress 
gradients during stress sign alteration. 

3. Ef fects  of  residual stresses on 
de fec t ive  s t ruc ture  of  a mater ia l  

The existence of adjacent layers with residual tangen- 
tial stresses of opposite sign, and the higher absolute 

(9a) values than the dislocation start stresses, %t (see Fig. 
2b and c) must intensify the contrary motion of dislo- 
cations with unidirectional Burgers vectors. Usually 
plastic materials a/e characterized by the correlation 

(9b) ~st/~s = 0.2 - 0.6 [5]. 
Finally, this motion should lead to the accumula- 

(9c) tion of similar sign dislocations in cylindrical inter- 
layer boundaries, i.e. the so-called dislocation "walls" 

(9d) will be formed. The equilibrium density of dislocations 
in the "walls" is determined by the balance of long- 



range stresses, ~ ,  caused by the own "wall" disloca- 
tions, inner stresses, criT, originating from the station- 
ary background dislocations (growth and net ones), 
and residual macroscopic stresses, cr~rj, existing in the 
material on both sides of the interlayer boundary. In 
the simplest case when active sliding planes in the 
crystal lattice coincide with coordinate planes 
z = constant and/or q~ = constant of a base cylin- 
drical system of axes (see Fig. 1), the balance equation 
allowing for solutions of the above-mentioned cases 

r r r i n  a can be given as z=~ - Zst "c=,Jl'cz~l -- "c=,~ + "Cz,~. 
Using this equation and taking into account that 

the long-range stresses under given conditions can be 
caused only by screw components of "wall" and back- 
ground dislocations and in so far as from [6] 

z"~ = ~ 0.5Gai(cos ~ i ) ( p l )  1/2 
i = 1  

and also from [7] 

in ~ Gai(cos Zi)(p~i)l/2 /2n T,z~ ~ .  
i = l  

(11) 

(12) 

then an expression to estimate dislocation density in 
interlayer boundaries can be given. 

In Equations 11 and 12, G is the shear modulus, n is 
the number of dislocation sets forming a wall, al cos gl 
is the magnitude of a screw component for Burgers 
vector of set i, pi is the dislocation density. The stress 
balance equation for torsion of the sufficiently perfect 
samples (pl >> Prl) with sliding subsystems of similar 
Burgers vectors (ag = a) gives 

• (pi)1/2 cos Zi = 2(Az=~ - Zst)/Ga (13a) 
i = 1  

& 
P = 2. P~ (13b) 

where A-c=o is the amplitude of residual stresses near 
the boundaries between sample layers with different 
stress sign. The calculations show (Fig. 2b) that for 
a surface-plasticized layer, Azz~ -~ Zs - zPs, and 
Az=~ ~- 0.6(%hs -- ZS) for a surface-hardened layer. 

Let us discuss a real example, namely a well-known 
test on lead wire torsion in 0.2% oleinic acid solution 
in vaseline oil. Monocrystalline lead wire was an- 
nealed and oriented along its load-bearing axis incli- 
nable between nearest [1 1 0] and [1 1 1] directions of 
the crystalline lattice. The reciprocal location of the 
most active lead sliding subsystems ( 1 10 )  { 1 1 1 } and 
coordinate planes of the base cylindrical system is 
close enough in this case in order to use Equation 13 
for estimation of the wall dislocation density. The 
following shear modulus and geometrical sizes are 
used: G = 5.5 GPa, a = 0.35 nm [7] and b -- 0.5 mm 
[8]. 

Material characteristics dependent on both 
physicochemical conditions at the sample surface and 
bulk lattice defects can be estimated using experi- 
mental data [8, 9]: ~ss = 2.2 MPa, Ax=~ = 1.33 MPa, 
Zst = 0.1, lzss; d = 5-10 gm; pfl ~ 10 6 cm -2. Assum- 
ing n = 4, Z~ = 0-35 ~ and Pi is approximately the 
same for all /-set numbers and using Equation 13, 
the partial and total density of "wall" dislocations 

can be obtained: Pi = (8-12)x 10 6 cm -2 and p ~- 
4 • 10 7 cm-  2. 

The process of dislocations concentrating in the 
interlayer boundary is accompanied by the syn- 
chronous purification of near-boundary regions from 
the dislocations. It is easy to show that the region 
width is 8 -~ (1/pi)l/2; according to the given data (for 
lead) ~ ~ 0.5d. Under these conditions (due to the 
small width of the surface-modified layer) an appreci- 
able part of the layer will tend to have more ordered 
and regulated dislocation structure compared to that 
under loading. Simultaneously, the short-range effec- 
tive stresses occurring in the inner boundary of the 
surface-modified layer due to accumulation of similar 
dislocations and growing progressively with the num- 
ber of loading cycles (and with "proportionate" in- 
creasing of p, Of and Az,,) will stimulate a gradual 
chipping of the layer from the inner sample zone. The 
chipping process starts in regions of the interlayer 
boundary which are characterized with the values of 
elastic energy, %, close to the free surface energy, 7s. 
Assuming 

_ G a2p~/2 cos2z / ln  2nai(cos-zi)P~/2 
7a 4n i =  1 

+ ~ - - v  n 2nai(sin-i)p~/2 
where v is Poisson's ratio, ~ is a parameter having 
a numerical value dependent on the relation between 
the energy of an elastic stress field of a dislocation and 
the energy of its core, the estimation of the critical 
density for "wall" dislocations in the boundary before 
chipping can be carried out. For  example, in the tests 
with the lead wire at n = 4, Z~ = 0-35 ~ and ~ = 4 
[6], under conditions that 7s = 0.56 J m -2 [10] then 
Per = 1014-10~5 c m-2.  Taking into account the differ- 
ence in the residual stress distribution for surface- 
plasticized and surface-hardened samples, it can be 
predicted that especially intensive processes of inner- 
layer dislocation structure regulation, leading to the 
improvement of crystalline lattice, i.e. to the relative 
decrease of the microdistortions and to the increase of 
mosaic block size, will occur during pauses in the same 
sign cyclic torsion of the surface-plasticized rods. In- 
deed, residual stresses inside near-surface layers of 
surface-plasticized rods have an opposite sign with 
respect to the outer loading stresses, and during the 
complete cycle, the residual stresses should involve the 
dislocations in alternating motions which results in 
some part of them moving to the free sample surface 
and slipping away from the crystal lattice. 

On the other hand, the chipping processes will pre- 
dominate during the torsion of surface-hardened rods. 
This is because the residual tangential stresses in the 
external layer have the same sign as active ones, and in 
the interlayer boundary the residual tangential stres- 
ses drastically change in sign, promoting the addi- 
tional concentration and accumulation of immobile 
dislocations near the boundary. 

4. Conclusions 
A comparative study of residual stresses arising in 
surface-modified material after uniaxial extension, 
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constriction [1], bending [2] and torsion permits 
a general regularity typical of these cases to be de- 
duced: in the above-mentioned tests the residual stres- 
scs arising in a plasticizcd surface layer of a material 
always have a sign opposite to that of the outer load- 
ing strcsses. As a rule, in surface-hardened layers, the 
outer loading and residual stresses have the same sign. 
Hence, for a complex loading of any kind, the traject- 
ory of which can be given by superposition of the 
listed plane approximations, the same regularities are 
still true. This concerns not only the distribution of 
residual stresses in near-surface layers of modified 
materials, but the conclusions are also universal about 
the influence of the active media and residual stresses 
on the defect structure of a material. 
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